Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available March 22, 2026
-
Collecting network data directly from network members can be challenging. One alternative involves inferring a network from observed groups, for example, inferring a network of scientific collaboration from researchers’ observed paper authorships. In this paper, I explore when an unobserved undirected network of interest can accurately be inferred from observed groups. The analysis uses simulations to experimentally manipulate the structure of the unobserved network to be inferred, the number of groups observed, the extent to which the observed groups correspond to cliques in the unobserved network, and the method used to draw inferences. I find that when a small number of groups are observed, an unobserved network can be accurately inferred using a simple unweighted two-mode projection, provided that each group’s membership closely corresponds to a clique in the unobserved network. In contrast, when a large number of groups are observed, an unobserved network can be accurately inferred using a statistical backbone extraction model, even if the groups’ memberships are mostly random. These findings offer guidance for researchers seeking to indirectly measure a network of interest using observations of groups.more » « less
-
Papadopoulos, Fragkiskos (Ed.)Bipartite projections (e.g., event co-attendance) are often used to measure unipartite networks of interest (e.g., social interaction). Backbone extraction models can be useful for reducing the noise inherent in bipartite projections. However, these models typically assume that the bipartite edges (e.g., who attended which event) are unconstrained, which may not be true in practice (e.g., a person cannot attend an event held prior to their birth). We illustrate the importance of correctly modeling such edge constraints when extracting backbones, using both synthetic data that varies the number and type of constraints, and empirical data on children’s play groups. We find that failing to impose relevant constraints when the data contain constrained edges can result in the extraction of an inaccurate backbone. Therefore, we recommend that when bipartite data contain constrained edges, backbones be extracted using a model such as the Stochastic Degree Sequence Model with Edge Constraints (SDSM-EC).more » « less
-
Abstract One of the goals of open science is to promote the transparency and accessibility of research. Sharing data and materials used in network research is critical to these goals. In this paper, we present recommendations for whether, what, when, and where network data and materials should be shared. We recommend that network data and materials should be shared, but access to or use of shared data and materials may be restricted if necessary to avoid harm or comply with regulations. Researchers should share the network data and materials necessary to reproduce reported results via a publicly accessible repository when an associated manuscript is published. To ensure the adoption of these recommendations, network journals should require sharing, and network associations and academic institutions should reward sharing.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Adams, Benjamin; Griffin, Amy L; Scheider, Simon; McKenzie, Grant (Ed.)Geographic network visualizations often require assigning nodes to geographic coordinates, but this can be challenging when precise node locations are undefined. We explore this problem using U.S. senators as a case study. Each state has two senators, and thus it is difficult to assign clear individual locations. We devise eight different node placement strategies ranging from geometric approaches such as state centroids and longest axis midpoints to data-driven methods using population centers and home office locations. Through expert evaluation, we found that specific coordinates such as senators’ office locations and state centroids are preferred strategies, while random placements and the longest axis method are least favored. The findings also highlight the importance of aligning node placement with research goals and avoiding potentially misleading encodings. This paper contributes to future advancements in geospatial network visualization software development and aims to facilitate more effective exploratory spatial data analysis.more » « less
-
Abstract Shared memberships, social statuses, beliefs, and places can facilitate the formation of social ties. Two-mode projections provide a method for transforming two-mode data on individuals’ memberships in such groups into a one-mode network of their possible social ties. In this paper, I explore the opposite process: how social ties can facilitate the formation of groups, and how a two-mode network can be generated from a one-mode network. Drawing on theories of team formation, club joining, and organization recruitment, I propose three models that describe how such groups might emerge from the relationships in a social network. I show that these models can be used to generate two-mode networks that have characteristics commonly observed in empirical two-mode social networks and that they encode features of the one-mode networks from which they were generated. I conclude by discussing these models’ limitations and future directions for theory and methods concerning group formation.more » « less
-
Abstract Many applications require randomly sampling bipartite graphs with fixed degrees or randomly sampling incidence matrices with fixed row and column sums. Although several sampling algorithms exist, the ‘curveball’ algorithm is the most efficient with an asymptotic time complexity of $O(n~log~n)$ and has been proven to sample uniformly at random. In this article, we introduce the ‘fastball’ algorithm, which adopts a similar approach but has an asymptotic time complexity of $O(n)$. We show that a C$$\texttt{++}$$ implementation of fastball randomly samples large bipartite graphs with fixed degrees faster than curveball, and illustrate the value of this faster algorithm in the context of the fixed degree sequence model for backbone extraction.more » « less
-
Cherifi, Hocine (Ed.)Networks are useful for representing phenomena in a broad range of domains. Although their ability to represent complexity can be a virtue, it is sometimes useful to focus on a simplified network that contains only the most important edges: the backbone. This paper introduces and demonstrates a substantially expanded version of the backbone package for R, which now provides methods for extracting backbones from weighted networks, weighted bipartite projections, and unweighted networks. For each type of network, fully replicable code is presented first for small toy examples, then for complete empirical examples using transportation, political, and social networks. The paper also demonstrates the implications of several issues of statistical inference that arise in backbone extraction. It concludes by briefly reviewing existing applications of backbone extraction using the backbone package, and future directions for research on network backbone extraction.more » « less
An official website of the United States government

Full Text Available